Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
IEEE Transactions on Instrumentation and Measurement ; 72:1-13, 2023.
Article in English | ProQuest Central | ID: covidwho-2213382

ABSTRACT

Recently, noncontact temperature measurement methods based on infrared face perception have received widely attentions since fever screening plays an important role in the early prediction of respiratory infections, such as SARS, H1N1, and COVID-19. However, the performance of these methods always significantly degrades when facing the changes of environment. Thus, the majority of these methods leverage the block-body and sensors to reduce the influence of environment changes. It is a pity that the increased instrument complexity leads to higher costs and failure rate. To address the aforementioned issues, this article presents a novel fever screening method, named dynamic group difference coding (DGDC), which is based on the analysis about the influencing factors. The key idea of DGDC is to compute the temperature differences between the target person and the recently passed crowd (dynamic group). Specifically, we develop the face temperature encoder (FTE) to describe the face temperature and thus construct the difference matrix of the embedding feature between the target person and the dynamic group. Multilayer perceptions (MLP) are employed to capture the intrinsic information by characterizing the difference matrix in vertical and horizontal directions, respectively. Finally, we provide a dataset of thermal infrared face (TIF) images and conduct extensive experiments to demonstrate the advantages of the proposed method over the competing methods.

SELECTION OF CITATIONS
SEARCH DETAIL